
Some Applications of Inverted Indexes on the UNIX System

M. E. Lesk

Bell Laboratories

Murray Hill, New Jersey 07974

ABSTRACT

I. Some Applications of Inverted Indexes − Overview

This memorandum describes a set of programs which make inv erted indexes to

UNIX* text files, and their application to retrieving and formatting citations for docu-

ments prepared using troff.

These indexing and searching programs make keyword indexes to volumes of

material too large for linear searching. Searches for combinations of single words can be

performed quickly. The programs are divided into two phases. The first makes an index

from the original data; the second searches the index and retrieves items. Both of these

phases are further divided into two parts to separate the data-dependent and algorithm

dependent code.

The major current application of these programs is the troff preprocessor refer. A

list of 4300 references is maintained on line, containing primarily papers written and

cited by local authors. Whenever one of these references is required in a paper, a few

words from the title or author list will retrieve it, and the user need not bother to re-enter

the exact citation. Alternatively, authors can use their own lists of papers.

This memorandum is of interest to those who are interested in facilities for search-

ing large but relatively unchanging text files on the UNIX system, and those who are

interested in handling bibliographic citations with UNIX troff.

II. Updating Publication Lists

This section is a brief note describing the auxiliary programs for managing the

updating processing. It is written to aid clerical users in maintaining lists of references.

Primarily, the programs described permit a large amount of individual control over the

content of publication lists while retaining the usefulness of the files to other users.

III. Manual Pages

This section contains the pages from the UNIX programmer’s manual for the

lookall, pubindex, and refer commands. It is useful for reference.

* UNIX is a Trademark of Bell Laboratories.

1. Introduction.

The UNIX® system has many utilities (e.g. grep, awk, lex, egrep, fgrep, ...) to search through files of

text, but most of them are based on a linear scan through the entire file, using some deterministic automa-

ton. This memorandum discusses a program which uses inverted indexes1 and can thus be used on much

larger data bases.

1 D. Knuth, The Art of Computer Programming: Vol. 3, Sorting and Searching, Addison-Wesley, Reading,

Mass. (1977). See section 6.5.

-2-

As with any indexing system, of course, there are some disadvantages; once an index is made, the

files that have been indexed can not be changed without remaking the index. Thus applications are

restricted to those making many searches of relatively stable data. Furthermore, these programs depend on

hashing, and can only search for exact matches of whole keywords. It is not possible to look for arithmetic

or logical expressions (e.g. ‘‘date greater than 1970’’) or for regular expression searching such as that in

lex.2

Currently there are two uses of this software, the refer preprocessor to format references, and the

lookall command to search through all text files on the UNIX system.

The remaining sections of this memorandum discuss the searching programs and their uses. Section

2 explains the operation of the searching algorithm and describes the data collected for use with the lookall
command. The more important application, refer has a user’s description in section 3. Section 4 goes into

more detail on reference files for the benefit of those who wish to add references to data bases or write new

troff macros for use with refer. The options to make refer collect identical citations, or otherwise relocate

and adjust references, are described in section 5. The UNIX manual sections for refer, lookall, and associ-

ated commands are attached as appendices.

2. Searching.

The indexing and searching process is divided into two phases, each made of two parts. These are

shown below.

A. Construct the index.

(1) Find keys — turn the input files into a sequence of tags and keys, where each tag identifies a

distinct item in the input and the keys for each such item are the strings under which it is to be

indexed.

(2) Hash and sort — prepare a set of inverted indexes from which, given a set of keys, the appro-

priate item tags can be found quickly.

B. Retrieve an item in response to a query.

(3) Search — Giv en some keys, look through the files prepared by the hashing and sorting facility

and derive the appropriate tags.

(4) Deliver — Giv en the tags, find the original items. This completes the searching process.

The first phase, making the index, is presumably done relatively infrequently. It should, of course, be done

whenever the data being indexed change. In contrast, the second phase, retrieving items, is presumably

done often, and must be rapid.

An effort is made to separate code which depends on the data being handled from code which

depends on the searching procedure. The search algorithm is involved only in steps (2) and (3), while

knowledge of the actual data files is needed only by steps (1) and (4). Thus it is easy to adapt to different

data files or different search algorithms.

To start with, it is necessary to have some way of selecting or generating keys from input files. For

dealing with files that are basically English, we have a key-making program which automatically selects

words and passes them to the hashing and sorting program (step 2). The format used has one line for each

input item, arranged as follows:

name:start,length (tab) key1 key2 key3 ...

where name is the file name, start is the starting byte number, and length is the number of bytes in the

entry.

These lines are the only input used to make the index. The first field (the file name, byte position,

and byte count) is the tag of the item and can be used to retrieve it quickly. Normally, an item is either a

whole file or a section of a file delimited by blank lines. After the tab, the second field contains the keys.

The keys, if selected by the automatic program, are any alphanumeric strings which are not among the 100

2 M. E. Lesk, “Lex — A Lexical Analyzer Generator,” Comp. Sci. Tech. Rep. No. 39, Bell Laboratories,

Murray Hill, New Jersey (October 1975).

-3-

most frequent words in English and which are not entirely numeric (except for four-digit numbers begin-

ning 19, which are accepted as dates). Ke ys are truncated to six characters and converted to lower case.

Some selection is needed if the original items are very large. We normally just take the first n keys, with n
less than 100 or so; this replaces any attempt at intelligent selection. One file in our system is a complete

English dictionary; it would presumably be retrieved for all queries.

To generate an inverted index to the list of record tags and keys, the keys are hashed and sorted to

produce an index. What is wanted, ideally, is a series of lists showing the tags associated with each key. To

condense this, what is actually produced is a list showing the tags associated with each hash code, and thus

with some set of keys. To speed up access and further save space, a set of three or possibly four files is pro-

duced. These files are:

File Contents

eennttrryy Pointers to posting file

for each hash code

ppoossttiinngg Lists of tag pointers for

each hash code

ttaa gg Tags for each item

kk eeyy Ke ys for each item

(optional)

The posting file comprises the real data: it contains a sequence of lists of items posted under each hash

code. To speed up searching, the entry file is an array of pointers into the posting file, one per potential

hash code. Furthermore, the items in the lists in the posting file are not referred to by their complete tag,

but just by an address in the tag file, which gives the complete tags. The key file is optional and contains a

copy of the keys used in the indexing.

The searching process starts with a query, containing several keys. The goal is to obtain all items

which were indexed under these keys. The query keys are hashed, and the pointers in the entry file used to

access the lists in the posting file. These lists are addresses in the tag file of documents posted under the

hash codes derived from the query. The common items from all lists are determined; this must include the

items indexed by every key, but may also contain some items which are false drops, since items referenced

by the correct hash codes need not actually have contained the correct keys. Normally, if there are several

keys in the query, there are not likely to be many false drops in the final combined list even though each

hash code is somewhat ambiguous. The actual tags are then obtained from the tag file, and to guard against

the possibility that an item has false-dropped on some hash code in the query, the original items are nor-

mally obtained from the delivery program (4) and the query keys checked against them by string compari-

son.

Usually, therefore, the check for bad drops is made against the original file. However, if the key

derivation procedure is complex, it may be preferable to check against the keys fed to program (2). In this

case the optional key file which contains the keys associated with each item is generated, and the item tag is

supplemented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for each item.

This file is not usually necessary with the present key-selection program, since the keys always appear in

the original document.

There is also an option (-Cn) for coordination level searching. This retrieves items which match all

but n of the query keys. The items are retrieved in the order of the number of keys that they match. Of

course, n must be less than the number of query keys (nothing is retrieved unless it matches at least one

key).

As an example, consider one set of 4377 references, comprising 660,000 bytes. This included 51,000

keys, of which 5,900 were distinct keys. The hash table is kept full to save space (at the expense of time);

995 of 997 possible hash codes were used. The total set of index files (no key file) included 171,000 bytes,

about 26% of the original file size. It took 8 minutes of processor time to hash, sort, and write the index.

To search for a single query with the resulting index took 1.9 seconds of processor time, while to find the

-4-

same paper with a sequential linear search using grep (reading all of the tags and keys) took 12.3 seconds

of processor time.

We hav e also used this software to index all of the English stored on our UNIX system. This is the

index searched by the lookall command. On a typical day there were 29,000 files in our user file system,

containing about 152,000,000 bytes. Of these 5,300 files, containing 32,000,000 bytes (about 21%) were

English text. The total number of ‘words’ (determined mechanically) was 5,100,000. Of these 227,000

were selected as keys; 19,000 were distinct, hashing to 4,900 (of 5,000 possible) different hash codes. The

resulting inverted file indexes used 845,000 bytes, or about 2.6% of the size of the original files. The par-

ticularly small indexes are caused by the fact that keys are taken from only the first 50 non-common words

of some very long input files.

Even this large lookall index can be searched quickly. For example, to find this document by looking

for the keys ‘‘lesk inverted indexes’’ required 1.7 seconds of processor time and system time. By compari-

son, just to search the 800,000 byte dictionary (smaller than even the inverted indexes, let alone the

32,000,000 bytes of text files) with grep takes 29 seconds of processor time. The lookall program is thus

useful when looking for a document which you believe is stored on-line, but do not know where. For

example, many memos from the Computing Science Research Center are in its UNIX file system, but it is

often difficult to guess where a particular memo might be (it might have sev eral authors, each with many

directories, and have been worked on by a secretary with yet more directories). Instructions for the use of

the lookall command are given in the manual section, shown in the appendix to this memorandum.

The only indexes maintained routinely are those of publication lists and all English files. To make

other indexes, the programs for making keys, sorting them, searching the indexes, and delivering answers

must be used. Since they are usually invoked as parts of higher-level commands, they are not in the default

command directory, but are available to any user in the directory /usr/lib/refer. Three programs are of inter-

est: mkey, which isolates keys from input files; inv, which makes an index from a set of keys; and hunt,
which searches the index and delivers the items. Note that the two parts of the retrieval phase are combined

into one program, to avoid the excessive system work and delay which would result from running these as

separate processes.

These three commands have a large number of options to adapt to different kinds of input. The user

not interested in the detailed description that now follows may skip to section 3, which describes the refer
program, a packaged-up version of these tools specifically oriented towards formatting references.

Make Keys. The program mkey is the key-making program corresponding to step (1) in phase A.

Normally, it reads its input from the file names given as arguments, and if there are no arguments it reads

from the standard input. It assumes that blank lines in the input delimit separate items, for each of which a

different line of keys should be generated. The lines of keys are written on the standard output. Ke ys are

any alphanumeric string in the input not among the most frequent words in English and not entirely

numeric (except that all-numeric strings are acceptable if they are between 1900 and 1999). In the output,

keys are translated to lower case, and truncated to six characters in length; any associated punctuation is

removed. The following flag arguments are recognized by mkey:

−c name Name of file of common words; default is /usr/lib/eign.
−f name Read a list of files from name and take each as an input argument.

−i chars Ignore all lines which begin with ‘%’ followed by any character in

chars.

−kn Use at most n keys per input item.

−ln Ignore items shorter than n letters long.

−nm Ignore as a key any word in the first m words of the list of common

English words. The default is 100.

−s Remove the labels (file:start,length) from the output; just give the keys.

Used when searching rather than indexing.

−w Each whole file is a separate item; blank lines in files are irrelevant.

The normal arguments for indexing references are the defaults, which are −c /usr/lib/eign, −n100,

and −l3. For searching, the −s option is also needed. When the big lookall index of all English files is run,

the options are −w, −k50, and −f (filelist). When running on textual input, the mkey program processes

-5-

about 1000 English words per processor second. Unless the −k option is used (and the input files are long

enough for it to take effect) the output of mkey is comparable in size to its input.

Hash and invert. The inv program computes the hash codes and writes the inverted files. It reads

the output of mkey and writes the set of files described earlier in this section. It expects one argument,

which is used as the base name for the three (or four) files to be written. Assuming an argument of Index
(the default) the entry file is named Index.ia, the posting file Index.ib, the tag file Index.ic, and the key file

(if present) Index.id. The inv program recognizes the following options:

−a Append the new keys to a previous set of inverted files, making new

files if there is no old set using the same base name.

−d Write the optional key file. This is needed when you can not check for

false drops by looking for the keys in the original inputs, i.e. when the

key derivation procedure is complicated and the output keys are not

words from the input files.

−hn The hash table size is n (default 997); n should be prime. Making n
bigger saves search time and spends disk space.

−i[u] name Take input from file name, instead of the standard input; if u is present

name is unlinked when the sort is started. Using this option permits the

sort scratch space to overlap the disk space used for input keys.

−n Make a completely new set of inverted files, ignoring previous files.

−p Pipe into the sort program, rather than writing a temporary input file.

This saves disk space and spends processor time.

−v Verbose mode; print a summary of the number of keys which finished

indexing.

About half the time used in inv is in the contained sort. Assuming the sort is roughly linear, howev er,

a guess at the total timing for inv is 250 keys per second. The space used is usually of more importance: the

entry file uses four bytes per possible hash (note the −h option), and the tag file around 15-20 bytes per

item indexed. Roughly, the posting file contains one item for each key instance and one item for each pos-

sible hash code; the items are two bytes long if the tag file is less than 65336 bytes long, and the items are

four bytes wide if the tag file is greater than 65536 bytes long. To minimize storage, the hash tables should

be over-full; for most of the files indexed in this way, there is no other real choice, since the entry file must

fit in memory.

Searching and Retrieving. The hunt program retrieves items from an index. It combines, as men-

tioned above, the two parts of phase (B): search and delivery. The reason why it is efficient to combine

delivery and search is partly to avoid starting unnecessary processes, and partly because the delivery opera-

tion must be a part of the search operation in any case. Because of the hashing, the search part takes place

in two stages: first items are retrieved which have the right hash codes associated with them, and then the

actual items are inspected to determine false drops, i.e. to determine if anything with the right hash codes

doesn’t really have the right keys. Since the original item is retrieved to check on false drops, it is efficient

to present it immediately, rather than only giving the tag as output and later retrieving the item again. If

there were a separate key file, this argument would not apply, but separate key files are not common.

Input to hunt is taken from the standard input, one query per line. Each query should be in mkey −s
output format; all lower case, no punctuation. The hunt program takes one argument which specifies the

base name of the index files to be searched. Only one set of index files can be searched at a time, although

many text files may be indexed as a group, of course. If one of the text files has been changed since the

index, that file is searched with fgrep; this may occasionally slow down the searching, and care should be

taken to avoid having many out of date files. The following option arguments are recognized by hunt:

−a Give all output; ignore checking for false drops.

−Cn Coordination level n; retrieve items with not more than n terms of the

input missing; default C0, implying that each search term must be in

the output items.

-6-

−F[ynd] ‘‘−Fy’’ giv es the text of all the items found; ‘‘−Fn’’ suppresses them.

‘‘−Fd ’’ where d is an integer gives the text of the first d items. The

default is −Fy.
−g Do not use fgrep to search files changed since the index was made;

print an error comment instead.

−i string Take string as input, instead of reading the standard input.

−l n The maximum length of internal lists of candidate items is n; default

1000.

−o string Put text output (‘‘−Fy’’) in string; of use only when invoked from

another program.

−p Print hash code frequencies; mostly for use in optimizing hash table

sizes.

−T[ynd] ‘‘−Ty’’ giv es the tags of the items found; ‘‘−Tn’’ suppresses them.

‘‘−Td ’’ where d is an integer gives the first d tags. The default is −Tn.

−t string Put tag output (‘‘−Ty’’) in string; of use only when invoked from

another program.

The timing of hunt is complex. Normally the hash table is overfull, so that there will be many false

drops on any single term; but a multi-term query will have few false drops on all terms. Thus if a query is

underspecified (one search term) many potential items will be examined and discarded as false drops, wast-

ing time. If the query is overspecified (a dozen search terms) many keys will be examined only to verify

that the single item under consideration has that key posted. The variation of search time with number of

keys is shown in the table below. Queries of varying length were constructed to retrieve a particular docu-

ment from the file of references. In the sequence to the left, search terms were chosen so as to select the

desired paper as quickly as possible. In the sequence on the right, terms were chosen inefficiently, so that

the query did not uniquely select the desired document until four keys had been used. The same document

was the target in each case, and the final set of eight keys are also identical; the differences at five, six and

seven keys are produced by measurement error, not by the slightly different key lists.

Efficient Keys Inefficient Keys

No. keys Total drops Retrieved Search time No. keys Total drops Retrieved Search time

(incl. false) Documents (seconds) (incl. false) Documents (seconds)

1 15 3 1.27 1 68 55 5.96

2 1 1 0.11 2 29 29 2.72

3 1 1 0.14 3 8 8 0.95

4 1 1 0.17 4 1 1 0.18

5 1 1 0.19 5 1 1 0.21

6 1 1 0.23 6 1 1 0.22

7 1 1 0.27 7 1 1 0.26

8 1 1 0.29 8 1 1 0.29

As would be expected, the optimal search is achieved when the query just specifies the answer; however,

overspecification is quite cheap. Roughly, the time required by hunt can be approximated as 30 millisec-

onds per search key plus 75 milliseconds per dropped document (whether it is a false drop or a real

answer). In general, overspecification can be recommended; it protects the user against additions to the

data base which turn previously uniquely-answered queries into ambiguous queries.

The careful reader will have noted an enormous discrepancy between these times and the earlier

quoted time of around 1.9 seconds for a search. The times here are purely for the search and retrieval: they

are measured by running many searches through a single invocation of the hunt program alone. Usually,

the UNIX command processor (the shell) must start both the mkey and hunt processes for each query, and

arrange for the output of mkey to be fed to the hunt program. This adds a fixed overhead of about 1.7 sec-

onds of processor time to any single search. Furthermore, remember that all these times are processor

times: on a typical morning on our PDP 11/70 system, with about one dozen people logged on, to obtain 1

second of processor time for the search program took between 2 and 12 seconds of real time, with a median

of 3.9 seconds and a mean of 4.8 seconds. Thus, although the work involved in a single search may be only

-7-

200 milliseconds, after you add the 1.7 seconds of startup processor time and then assume a 4:1

elapsed/processor time ratio, it will be 8 seconds before any response is printed.

3. Selecting and Formatting References for TROFF

The major application of the retrieval software is refer, which is a troff preprocessor like eqn.3 It scans

its input looking for items of the form

.[
imprecise citation

.]

where an imprecise citation is merely a string of words found in the relevant bibliographic citation. This is

translated into a properly formatted reference. If the imprecise citation does not correctly identify a single

paper (either selecting no papers or too many) a message is given. The data base of citations searched may

be tailored to each system, and individual users may specify their own citation files. On our system, the

default data base is accumulated from the publication lists of the members of our organization, plus about

half a dozen personal bibliographies that were collected. The present total is about 4300 citations, but this

increases steadily. Even now, the data base covers a large fraction of local citations.

For example, the reference for the eqn paper above was specified as

...
preprocessor like

.I eqn.

.[

kernighan cherry acm 1975

.]

It scans its input looking for items

...

This paper was itself printed using refer. The above input text was processed by refer as well as tbl and

troff by the command

refer memo-file | tbl | troff −ms

and the reference was automatically translated into a correct citation to the ACM paper on mathematical

typesetting.

The procedure to use to place a reference in a paper using refer is as follows. First, use the lookbib
command to check that the paper is in the data base and to find out what keys are necessary to retrieve it.

This is done by typing lookbib and then typing some potential queries until a suitable query is found. For

example, had one started to find the eqn paper shown above by presenting the query

$ lookbib

kernighan cherry

(EOT)

lookbib would have found several items; experimentation would quickly have shown that the query given

above is adequate. Overspecifying the query is of course harmless; it is even desirable, since it decreases

the risk that a document added to the publication data base in the future will be retrieved in addition to the

intended document. The extra time taken by even a grossly overspecified query is quite small. A particu-

larly careful reader may have noticed that ‘‘acm’’ does not appear in the printed citation; we have supple-

mented some of the data base items with extra keywords, such as common abbreviations for journals or

other sources, to aid in searching.

If the reference is in the data base, the query that retrieved it can be inserted in the text, between .[
and .] brackets. If it is not in the data base, it can be typed into a private file of references, using the format

discussed in the next section, and then the −p option used to search this private file. Such a command

3 B. W. Kernighan and L. L. Cherry, “A System for Typesetting Mathematics,” Comm. Assoc. Comp. Mach.,

18, pp. 151-157, Bell Laboratories, Murray Hill, New Jersey (March 1975).

-8-

might read (if the private references are called myfile)

refer −p myfile document | tbl | eqn | troff −ms . . .

where tbl and/or eqn could be omitted if not needed. The use of the −ms macros4 or some other macro

package, however, is essential. Refer only generates the data for the references; exact formatting is done by

some macro package, and if none is supplied the references will not be printed.

By default, the references are numbered sequentially, and the −ms macros format references as foot-

notes at the bottom of the page. This memorandum is an example of that style. Other possibilities are dis-

cussed in section 5 below.

4. Reference Files.

A reference file is a set of bibliographic references usable with refer. It can be indexed using the soft-

ware described in section 2 for fast searching. What refer does is to read the input document stream, look-

ing for imprecise citation references. It then searches through reference files to find the full citations, and

inserts them into the document. The format of the full citation is arranged to make it convenient for a

macro package, such as the −ms macros, to format the reference for printing. Since the format of the final

reference is determined by the desired style of output, which is determined by the macros used, refer avoids

forcing any kind of reference appearance. All it does is define a set of string registers which contain the

basic information about the reference; and provide a macro call which is expanded by the macro package to

format the reference. It is the responsibility of the final macro package to see that the reference is actually

printed; if no macros are used, and the output of refer fed untranslated to troff, nothing at all will be printed.

The strings defined by refer are taken directly from the files of references, which are in the following

format. The references should be separated by blank lines. Each reference is a sequence of lines beginning

with % and followed by a key-letter. The remainder of that line, and successive lines until the next line

beginning with %, contain the information specified by the key-letter. In general, refer does not interpret

the information, but merely presents it to the macro package for final formatting. A user with a separate

macro package, for example, can add new key-letters or use the existing ones for other purposes without

bothering refer.

The meaning of the key-letters given below, in particular, is that assigned by the −ms macros. Not all

information, obviously, is used with each citation. For example, if a document is both an internal memo-

randum and a journal article, the macros ignore the memorandum version and cite only the journal article.

Some kinds of information are not used at all in printing the reference; if a user does not like finding refer-

ences by specifying title or author keywords, and prefers to add specific keywords to the citation, a field is

available which is searched but not printed (K).

The key letters currently recognized by refer and −ms, with the kind of information implied, are:

Ke y Information specified Ke y Information specified

A Author’s name N Issue number

B Title of book containing item O Other information

C City of publication P Page(s) of article

D Date R Technical report reference

E Editor of book containing item T Title

G Government (NTIS) ordering number V Volume number

I Issuer (publisher)

J Journal name

K Keys (for searching) X or

L Label Y or

M Memorandum label Z Information not used by refer

For example, a sample reference could be typed as:

4 M. E. Lesk, Typing Documents on UNIX and GCOS: The -ms Macros for Troff (1977).

-9-

%T Bounds on the Complexity of the Maximal

Common Subsequence Problem

%Z ctr127

%A A. V. Aho

%A D. S. Hirschberg

%A J. D. Ullman

%J J. ACM

%V 23

%N 1

%P 1-12

%M abcd-78

%D Jan. 1976

Order is irrelevant, except that authors are shown in the order given. The output of refer is a stream of

string definitions, one for each of the fields of each reference, as shown below.

.]-

.ds [A authors’ names ...

.ds [T title ...

.ds [J journal ...

...

.] [type-number

The refer program, in general, does not concern itself with the significance of the strings. The different

fields are treated identically by refer, except that the X, Y and Z fields are ignored (see the −i option of

mkey) in indexing and searching. All refer does is select the appropriate citation, based on the keys. The

macro package must arrange the strings so as to produce an appropriately formatted citation. In this pro-

cess, it uses the convention that the ‘T’ field is the title, the ‘J’ field the journal, and so forth.

The refer program does arrange the citation to simplify the macro package’s job, however. The spe-

cial macro .]− precedes the string definitions and the special macro .] [follows. These are changed from

the input .[and .] so that running the same file through refer again is harmless. The .]− macro can be used

by the macro package to initialize. The .] [macro, which should be used to print the reference, is given an

argument type-number to indicate the kind of reference, as follows:

Value Kind of reference

1 Journal article

2 Book

3 Article within book

4 Technical report

5 Bell Labs technical memorandum

0 Other

The type is determined by the presence or absence of particular fields in the citation (a journal article must

have a ‘J’ field, a book must have an ‘I’ field, and so forth). To a small extent, this violates the above rule

that refer does not concern itself with the contents of the citation; however, the classification of the citation

in troff macros would require a relatively expensive and obscure program. Any macro writer may, of

course, preserve consistency by ignoring the argument to the .] [macro.

The reference is flagged in the text with the sequence

* ([.number* (.]

where number is the footnote number. The strings [. and .] should be used by the macro package to format

the reference flag in the text. These strings can be replaced for a particular footnote, as described in section

5. The footnote number (or other signal) is available to the reference macro .] [as the string register [F. To

simplify dealing with a text reference that occurs at the end of a sentence, refer treats a reference which fol-

lows a period in a special way. The period is removed, and the reference is preceded by a call for the string

<. and followed by a call for the string >. For example, if a reference follows ‘‘end.’’ it will appear as

-10-

end*(<.*([.number*(.]*(>.

where number is the footnote number. The macro package should turn either the string >. or <. into a

period and delete the other one. This permits the output to have either the form ‘‘end[31].’’ or ‘‘end.31’’ as

the macro package wishes. Note that in one case the period precedes the number and in the other it follows

the number.

In some cases users wish to suspend the searching, and merely use the reference macro formatting.

That is, the user doesn’t want to provide a search key between .[and .] brackets, but merely the reference

lines for the appropriate document. Alternatively, the user can wish to add a few fields to those in the refer-

ence as in the standard file, or override some fields. Altering or replacing fields, or supplying whole refer-

ences, is easily done by inserting lines beginning with %; any such line is taken as direct input to the refer-

ence processor rather than keys to be searched. Thus

.[
key1 key2 key3 ...
%Q New format item

%R Override report name

.]

makes the indicates changes to the result of searching for the keys. All of the search keys must be given

before the first % line.

If no search keys are provided, an entire citation can be provided in-line in the text. For example, if

the eqn paper citation were to be inserted in this way, rather than by searching for it in the data base, the

input would read

...
preprocessor like

.I eqn.

.[

%A B. W. Kernighan

%A L. L. Cherry

%T A System for Typesetting Mathematics

%J Comm. ACM

%V 18

%N 3

%P 151-157

%D March 1975

.]

It scans its input looking for items

...

This would produce a citation of the same appearance as that resulting from the file search.

As shown, fields are normally turned into troff strings. Sometimes users would rather have them

defined as macros, so that other troff commands can be placed into the data. When this is necessary, simply

double the control character % in the data. Thus the input

.[

%V 23

%%M

Bell Laboratories,

Murray Hill, N.J. 07974

.]

is processed by refer into

-11-

.ds [V 23

.de [M

Bell Laboratories,

Murray Hill, N.J. 07974

..

The information after %%M is defined as a macro to be invoked by .[M while the information after %V is

turned into a string to be invoked by \∗ ([V. At present −ms expects all information as strings.

5. Collecting References and other Refer Options

Normally, the combination of refer and −ms formats output as troff footnotes which are consecutively

numbered and placed at the bottom of the page. However, options exist to place the references at the end;

to arrange references alphabetically by senior author; and to indicate references by strings in the text of the

form [Name1975a] rather than by number. Whenever references are not placed at the bottom of a page

identical references are coalesced.

For example, the −e option to refer specifies that references are to be collected; in this case they are

output whenever the sequence

.[
$LIST$

.]

is encountered. Thus, to place references at the end of a paper, the user would run refer with the −e option

and place the above $LIST$ commands after the last line of the text. Refer will then move all the refer-

ences to that point. To aid in formatting the collected references, refer writes the references preceded by

the line

.]<

and followed by the line

.]>

to invoke special macros before and after the references.

Another possible option to refer is the −s option to specify sorting of references. The default, of

course, is to list references in the order presented. The −s option implies the −e option, and thus requires a

.[
$LIST$

.]

entry to call out the reference list. The −s option may be followed by a string of letters, numbers, and ‘+’

signs indicating how the references are to be sorted. The sort is done using the fields whose key-letters are

in the string as sorting keys; the numbers indicate how many of the fields are to be considered, with ‘+’

taken as a large number. Thus the default is −sAD meaning ‘‘Sort on senior author, then date.’’ To sort on

all authors and then title, specify −sA+T. And to sort on two authors and then the journal, write −sA2J.

Other options to refer change the signal or label inserted in the text for each reference. Normally

these are just sequential numbers, and their exact placement (within brackets, as superscripts, etc.) is deter-

mined by the macro package. The −l option replaces reference numbers by strings composed of the senior

author’s last name, the date, and a disambiguating letter. If a number follows the l as in −l3 only that many

letters of the last name are used in the label string. To abbreviate the date as well the form -lm,n shortens

the last name to the first m letters and the date to the last n digits. For example, the option −l3,2 would refer

to the eqn paper (reference 3) by the signal Ker75a, since it is the first cited reference by Kernighan in

1975.

A user wishing to specify particular labels for a private bibliography may use the −k option. Specify-

ing −kx causes the field x to be used as a label. The default is L. If this field ends in −, that character is

replaced by a sequence letter; otherwise the field is used exactly as given.

-12-

If none of the refer-produced signals are desired, the −b option entirely suppresses automatic text sig-

nals.

If the user wishes to override the −ms treatment of the reference signal (which is normally to enclose

the number in brackets in nroff and make it a superscript in troff) this can be done easily. If the lines .[or .]

contain anything following these characters, the remainders of these lines are used to surround the reference

signal, instead of the default. Thus, for example, to say ‘‘See reference (2).’’ and avoid ‘‘See reference.2’’

the input might appear

See reference

.[(

imprecise citation ...

.]).

Note that blanks are significant in this construction. If a permanent change is desired in the style of refer-

ence signals, however, it is probably easier to redefine the strings [. and .] (which are used to bracket each

signal) than to change each citation.

Although normally refer limits itself to retrieving the data for the reference, and leaves to a macro

package the job of arranging that data as required by the local format, there are two special options for rear-

rangements that can not be done by macro packages. The −c option puts fields into all upper case (CAPS-

SMALL CAPS in troff output). The key-letters indicated what information is to be translated to upper case

follow the c, so that −cAJ means that authors’ names and journals are to be in caps. The −a option writes

the names of authors last name first, that is A. D. Hall, Jr. is written as Hall, A. D. Jr. The citation form of

the Journal of the ACM, for example, would require both −cA and −a options. This produces authors’

names in the style KERNIGHAN, B. W. AND CHERRY, L. L. for the previous example. The −a option may be

followed by a number to indicate how many author names should be reversed; −a1 (without any −c option)

would produce Kernighan, B. W. and L. L. Cherry, for example.

Finally, there is also the previously-mentioned −p option to let the user specify a private file of refer-

ences to be searched before the public files. Note that refer does not insist on a previously made index for

these files. If a file is named which contains reference data but is not indexed, it will be searched (more

slowly) by refer using fgrep. In this way it is easy for users to keep small files of new references, which can

later be added to the public data bases.

