
A Guide to Typesetting Mathematics using GNU eqn
Ted Harding

Preamble
Like the othertroff preprocessorspic and tbl ,
which allow the user to format a complex structure
(diagram, table) by typing in a specification of it
expressed in adescription language—a reasonably
close approximation to ‘plain English’ instructions,
soeqn provides a mechanism for specifying how to
lay out mathematical notation. The ‘plain English’
aspect ofeqn in fact resembles what a lecturer
might speak out loud while writing mathematics on
a blackboard.

Encapsulatingeqn code
In order foreqn to recognise a block of user input
as something thateqn itself should interpret, rather
than pass unchanged through totroff , the start
and the end of theeqn block need to be flagged by
marks thateqn will recognise. Then, wheneqn
recognises the start of a block, all that follows will
be interpreted byeqn , and transformed intotroff
code which will result in suitably formatted output,
until the end of the block is recognised.Theneqn
will revert to ignoring the input until it recognises
the next start of aneqn block.

There are two mechanisms for marking the start and
end of aneqn block. The first is for displayed
equations, which are set apart from surrounding text
by being printed on their own separate lines.In this
case, the start of the block is flagged by.EQ at the
beginning of an input line, and the end of the block
is flagged by.EN at the beginning of an input line.
These serve two purposes. Firstly, the .EQ and
.EN are recognised byeqn as delimiting code that
eqn is to interpret. Secondly,eqn will pass the
‘ .EQ ’ and the ‘.EN ’ through to troff ; then
troff itself will evoke macrosEQand EN which
will position thetroff -formatted mathematics on
the page. The various standard macro packages
(me, mm, ms) embody implementations of theEQ
and EN macros. Themmimplementation behaves
somewhat differently from the other two. Users
may also write their own implementations.

The second is forin-line mathematics, in which
mathematical expressions occur within running text.
Here the eqn blocks are flagged bydelimiters
placed at the start and end of the block. The default
delimiter for both ends is$, placed at the start and
at the end. The user may define other delimiters to
be used instead of$...$.

The following section illustrates the most simple
and basic usage ofeqn , and shows the formatted
mathematical outputs.

Basic Use
Simple algebraic expressions
These are entered much as one would write them on
paper. For example:

.EQ
Z = X + Y
.EN

will produce:

Z = X + Y

which is (by default) centred. By following the.EQ
by a parameter, it may be forced to be left-justified
(L), or indented (I):

.EQ L
Z = X + Y
.EN

Z = X + Y

.EQ I
Z = X + Y
.EN

Z = X + Y

It is also possible to explicitly useC for a centred
equation, but this is already the default.

The above is for themeandmsmacro packages; the
mmpackage behaves differently. With mm, whatever
follows .EQ will be treated as anequation label
(see below); the entire ‘.EQEN ’ block
needs to be itself encapsulated between.DS and
.DE tags, with justification (left, indented, centred,
or right) controlled by a parameter to.DS , as in
.DS L , .DS I , .DS C , .DS CB , .DS R , .DS RB
(see man groff_mm for details). An example of
how to add anequation number(or label):

.EQ (3)
Z = X + Y
.EN

Z = X + Y (3)

To illustrate placement of this equationin-line:

The mathematical equation $Z = X + Y$
is understood by almost everyone.

The mathematical equationZ = X + Y is understood
by almost everyone.

The several progressive examples which follow will
illustrate how to build more complicated equations
and expressions.

Ted Harding 19 January 2011 Page 1 Last Revised 26 October 2013

A Guide to Typesetting Mathematics using GNUeqn

Multiplication of terms, expressed by juxtaposition,
can be constructed by again simply entering the
expression as you would normally write it (but note
the use of spaces to separate symbols and signs
(tokens) in the expression):

.EQ
f (x , y) = a + b x + c y + p x y
+ (1 - x) (2 - y)
.EN

f (x, y) = a + bx + cy + pxy + (1 − x)(2− y)

Explicit indication of multiplication, using ‘×’, is
done with thekeywordtimes :

.EQ
f (x , y) = a + b x + c y
+ p x y + (1 - x) t imes (2 - y)
.EN

f (x, y) = a + bx + cy + pxy + (1 − x) × (2 − y)

While eqn does quite a respectable job of laying
out equations as one would normally expect to see
them, often their appearance can be improved by
inserting a little extra space here and there.The two
tokens which are handy for this are ‘˜ ’ and ‘ˆ ’: ‘ ˜ ’
inserts a space of about 2/7 of anem, and ‘ˆ ’ about
1/6 of anem. The spacing in the above example can
be tweaked using these, for example as follows:

.EQ
f (x , y) ˜˜ =˜˜ a ˜ +˜ b x ˜ +˜ c y

˜ +˜ p x y

˜ +˜ ˆ (ˆ 1 - x) t imes (2 - y)
.EN

f (x, y) = a + bx + cy + pxy + (1 − x) × (2 − y)

which does look a bit nicer!

Raising to a power can be expressed by using the
keywordsup , and a subscript by usingsub :

.EQ
a x s up 2 + b x + c = 0
.EN

ax2 + bx + c = 0

.EQ
Y =
a s ub 1 X sub 1 + a sub 2 X sub 2
.EN

Y = a1X1 + a2X2

Often, a group of terms must be kept together as an
entity when being placed in an equation.This is
done by using opening and closingbraces: {...} .

A common use of this is in composing ratios, which
are entered asnumeratorover denominator:

.EQ
Z ˜ =˜˜ U over V

˜˜ =˜˜ {a + b X} over {c + d X}
.EN

Z =
U

V
=

a + bX

c + dX

Without the{...} , this would have become:

.EQ
Z ˜ =˜˜ U over V

˜˜ =˜˜ a + b X over c + d X
.EN

Z =
U

V
= a + b

X

c
+ dX

showing how the {...} keep the numerator terms
together, and the denominator terms together.

Another usage is where a group of terms is to be
‘fed’ to an operation which is to embrace the whole.
For instance, the keyword sqrt puts a square root
sign over the item that follows it, so that$sqrt X$
generates√ X , and$sqrt X + Y$ generates√ X + Y .
However, $sqrt {X + Y}$ generates√ X + Y .

We can now start to get more complicated.The
above quadratic equationax2 + bx + c = 0 has the
pair of solutions

.EQ
x ˜ =˜˜ {

- b +- s qrt {b sup 2 - 4 a c}
} o ver {2 a}
.EN

x =
−b ± √ b2 − 4ac

2a

Note the specialtoken ‘+- ’, which generates the
‘plus-or-minus’ symbol.While $+-$ generates ‘±’,
$+ -$ would generate ‘+ −’, so it is important to
pay attention to spaces which separate tokens. The
two ‘spacing’ tokens˜ andˆ act like spaces in this
respect, so do not need to be separated from their
surroundings (see some of the examples ofeqn
code above).

As a general rule of good practice, when entering
eqn code, it is wise to explicitly separate distinct
entities, sinceeqn may (wisely) generate slightly
different layout with spacing, in some cases, which
is better suited to mathematical typography.

Note how what you type foreqn resembles how
you might read the above equation out loud:

x equals: minus b plus-or-minus the square
root of b-squared-minus-4-a-c, all over 2 a

Ted Harding 19 January 2011 Page 2 Last Revised 26 October 2013

A Guide to Typesetting Mathematics using GNUeqn

Defining your own tokens as macros
Following on from the preceding example, if you
would prefer writingsquared to writing sup 2 ,
then you could do so by definingsquared as a
keyword:

.EQ
define squared %sup 2%
b s quared - 4 a c
.EN

b2 − 4ac

This defines ‘squared ’ as a macro: when it is
encountered, it is replaced by its definition ‘sup 2 ’.

The general format for such definitions is

define keyword %definition %

wheredefinition is anything interpretable byeqn ,
and % can be replaced by anything that does not
occur in definition. Such a definition will persist
throughout the document until it is removed by

undef keyword

or else replaced by a new definition ofkeyword.

If definition is a mathematical expression, it is wise
to enclose it in{...} (see below) so that it does
not interact undesirably with neighbouringeqn
code, but care is needed to avoid isolating eqn
keywords from elements they may need to refer to.
For example, definingsquared as

define squared %{sup 2}%

would not work, sincesup needs an item to its left
as the entity which will be given the superscript, but
the ‘{ ’ w ill isolatesup from the left, so that there is
nothing for it to apply a superscript to.The result,
in this case, would be a syntax error.

Macros with arguments
When such a definition may be used with elements
which vary from case to case, the variable elements
can be represented bymacro arguments, denoted
by $1 , $2 ,…,$9 (maximum of 9) in the definition.
Simple illustrative example:

.EQ
define thing %{$5 + $8}%
thing(A, B, C, D, E, F, G, H, I)
.EN

E + H

As a more complex example, suppose we would be
repeatedly using the above formula for the solution
of a quadratic equation, but with coefficients which
vary from case to case. Then the effort of re-typing
the full eqn representation of the solution every
time can be avoided by defining the expression as a
macro. Thisis illustrated below. Note that the entire
definition is enclosed in%{...}% (see above).

.EQ
define quadsol %{

$1 ˜ =˜˜ {
- $3 +- s qrt {$3 sup 2 - 4 $2 $4}
} o ver {2 $2}

}%
.EN

For the quadratic equation
$a x sup 2 + b x + c = 0$,
the solution is:
.EQ
quadsol(x, a, b, c)
.EN

For the quadratic equationax2 + bx + c = 0, the
solution is:

x =
−b ± √ b2 − 4ac

2a

For the quadratic equation
$P Y sup 2 + Q Y + R = ˜ 0$,
the solution is:
.EQ
quadsol(Y, P, Q, R)
.EN

For the quadratic equationPY2 + QY + R = 0, the
solution is:

Y =
−Q ± √ Q2 − 4PR

2P

Big brackets for tall expressions: left and right

.EQ
({a + b} o ver {c + d})
.EN

(
a + b

c + d
)

certainly doesn’t look right!

.EQ
left (
{a + b} over {c + d}
right)
.EN



a + b

c + d



looks much better. For certain “extensible” entities,
including the various brackets(,), {, }, [,], you can
useleft andright so as to make them match the
vertical extent of the object they embrace. Thisis
done by constructing the bracket from three parts:
top, centre, bottom; of which the centre is extensible.
For parentheses (as above), the centre is a straight
line, which may not look too good for very tall ones.

Ted Harding 19 January 2011 Page 3 Last Revised 26 October 2013

A Guide to Typesetting Mathematics using GNUeqn

Piles and Matrices
These compose vertical stacks, and rectangular
arrays, of items.The pile keyword is for stacks,
and its usage is as follows:

pile {
thing1 above thing2 above ... thingk
}

Thus the following eqn code composes the stack
that is shown to its right:

eqn Result

A

c + d

u2 + v2

cosx

.EQ
pile {A above {c+d}

above {u sup 2 + v sup 2}
above {cos x}

}
.EN

With pile , each item is vertically centred as shown
above. You can force each item to be left-justified
by usinglpile , or right-justified by usingrpile :

eqn Result

A

c + d

u2 + v2

cosx

.EQ
lpile {A above {c+d}

above {u sup 2 + v sup 2}
above {cos x}

}
.EN

Now, if appropriate, we could enclose the pile in
extended parentheses usingleft (and right) :

eqn Result






A

c + d

u2 + v2

cosx






.EQ
left (pile {A above {c+d}

above {u sup 2 + v sup 2}
above {cos x}

} r ight)
.EN

Note that the sizes of the parentheses are not ideal;
we shall come back to this sort of issue later.

To compose a rectangular array, the keyword is
matrix . Its usage is

matrix { list-of-columns }

where each column is defined just like apile , but
using the keyword ccol (for centred), orlcol or
rcol (for left- or right-justified). Thus:

eqn Result

A

B + C

D

E + F

.EQ
matrix{

ccol{ A above {B+C} }
ccol{ D above {E+F} }

}
.EN

One useful application in Mathematics for thepile
or the matrix is in displaying how an expression
may take different forms under different conditions.
Example (also illustrating the extensible{):

.EQ
F (X) ˜ =˜ left {
matrix{

lcol{ {4 X} above
{ 1 } a bove
{4 (1 - X)}

}
lcol{

{ r oman{"if "}
0 <= X <= 1 s mallover 4

} a bove
{ r oman{"if "}

1 s mallover 4 <= X <=
3 s mallover 4

} a bove
{ r oman{"if "}

3 s mallover 4 <= X <= 1
}

}
}
.EN

F(X) =







4X

1

4(1 − X)

if 0 ≤ X ≤ 1
4

if 1
4 ≤ X ≤ 3

4

if 3
4 ≤ X ≤ 1

Note that the “if ” (including the space) is intended
asplain text to be interpolated in the mathematics.
The{roman{"if "} causes it to be set in Roman
type, rather than Italic type which is the default for
mathematical symbols.

Mathematical names thateqn recognises, and will
automatically print in Roman when encountered in
input (unless ‘protected’ by quotes), are:

max min lim arc sin cos tan
exp log ln sinh cosh tanh det
Re Im and if for

However, ‘and’, ‘if’ and ‘for’ will be printed with
no following space, and their unquoted use (as
opposed to the quoted use of “if” above) should be
reserved for use within mathematical expressions.
The user can define further names (e.g. ‘Var’ for
“variance of”) to be handled in the same way within
mathematical expressions (see later).

Note alsothe use ofsmallover . This works just
like over , but the numerator and denominator will
be in smaller type, and put closer to the horizontal
line in the fraction, as in14 and3

4 above.

Ted Harding 19 January 2011 Page 4 Last Revised 26 October 2013

A Guide to Typesetting Mathematics using GNUeqn

Multiline equations
Often it arises that a long expression must be split
over sev eral lines; or that a sequence of successive
steps in the derivation of a result should be presented
over sev eral lines.An example which illustrates both:

eiθ = 1 + (iθ) + 1
2! (iθ)2 + 1

3! (iθ)3 + 1
4! (iθ)4 + . . .

= 1 − 1
2! θ 2 + 1

4! θ 4 + . . .

+ i (θ − 1
3! θ3 + 1

5! θ 5 + . . .)

= cosθ + i sinθ

where the three steps in the derivation correspond to
the three ‘= ’ signs, and the second step has itself
been split into two lines — first,because of length;
secondly, to highlight the two separate infinite series:
one for cosθ , and one for sinθ . Notethat the spacing
between the two lines of the second step is narrower
than the spacings between the steps, to emphasise
that these two lines belong together.

Theeqn code for the above is shown below. There
are some new elements in it which will be explained
in the following part of this page. Each of the four
lines above has its own .EQ IEN block,
(see below); and the spacings are achieved using
.sp 0.5 and.sp 0.25m .

.EQ I

e s up {i theta} ˜˜ mark = ˜˜
1 ˜ +˜ (i t heta) ˜ +˜
1 s mallover {2ˆ!}ˆ(i theta) sup 2

˜ +˜ 1 s mallover {3ˆ!}ˆ(i theta) sup 3

˜ +˜ 1 s mallover {4ˆ!}ˆ(i theta) sup 4

˜ +˜ ...

.EN

.sp 0.5m

.EQ I

lineup = ˜˜
1 ˜ - ˜ 1 s mallover {2ˆ!}ˆtheta sup 2

˜ +˜ 1 s mallover {4ˆ!}ˆtheta sup 4

˜ +˜ ...

.EN

.sp 0.25m

.EQ I

lineup {hphantom{= ˜˜ 1}} ˜ +˜ iˆ (ˆtheta

˜ - ˜ 1 s mallover {3ˆ!}ˆ theta sup 3

˜ +˜ 1 s mallover {5ˆ!}ˆ theta sup 5

˜ +˜ ... ˆ)

.EN

.sp 0.5m

.EQ I

lineup = ˜˜ cos theta ˜ +˜ iˆsin theta

.EN

Nearly everything in the above code has already
been explained, but there are new elementsmark
and lineup , and hphantom , which will be
explained next; mark andlineup are part ofeqn ,
while hphantom is a specially-written add-on.

mark and lineup
These are used to achieve the vertical lineup between
the three ‘= ’ signs and, along withhphantom , to
align the ‘+ ’ in l ine 3 with the ‘− ’ i n line 2 above it.

When usingmark and lineup , the .EQ should
have an explicit positioning parameter following it
(L or I or Cor R, hereI), else it is unlikely to work.

In theeqn block for line 1, where it would nomally
be e s up {i theta} ˜˜ =˜˜ the token mark
has been inserted before the ‘= ’ so as to giv e
e s up {i theta} ˜˜ mark = ˜˜ .

This has the effect that the horizontal position of the
left-hand end of the item immediately following
mark , here ‘= ’, is stored for future reference in
subsequent.EQEN blocks.

When, in a later block, the token lineup occurs,
the left-hand end of the item immediately following
lineup is then vertically aligned to the position
stored whenmark was encountered.

Thus thelineup s in lines 2 and 4 ensure that the
‘ = ’ signs in lines 2 and 4 are vertically aligned with
the ‘= ’ sign in line 1.

hphantom
Now for hphantom . This is a ‘special’ which has
the effect thathphantom{ expression} generates
an invisible eqn object which has height zero, and
width equal to that of the output which would be
created byeqn from theeqn code inexpression.

Thus the codehphantom{= ˜˜ 1} in the third
block creates an invisible object occupying exactly
as much horizontal space as would be occupied by
the result of ‘=˜˜ 1 ’. Subsequentformatted output
continues from the right-hand end of this object.

Then, whenhphantom{ expression} is preceded
by lineup , the left-hand end of this invisible
object is vertically aligned to the horizontal position
stored whenmark was encountered. Thus

e s up {i theta} ˜˜ mark = ˜˜ 1 ˜ +˜
lineup {hphantom{= ˜˜ 1}} ˜ +˜

in the first and third blocks result in the two ‘ + ’
signs in lines 1 and 3 being vertically aligned, and
hence in the ‘+ ’ sign in line 3 being aligned with
the ‘− ’ in l ine 2.

I hav ealso written ‘specials’hphantom{...} (an
invisible object, width= 0 and height equal to...)
and hphantom{...} (invisible object matching
both the width and the height of...).

Ted Harding 19 January 2011 Page 5 Last Revised 26 October 2013

A Guide to Typesetting Mathematics using GNUeqn

Code forhphantom
hphantom is defined by:
(a) a groff macro hphntmsrc , which can be

placed at the start of the document or in a macro
file; and:

(b) a ‘special’ definitionhphantom within eqn
code which evokes hphntmsrc

and similarly forvphntmsrc & vphantom , and
for phntmsrc & phantom :

.de hphntmsrc

.nr 0h 0

.nr 0d 0

.nr 0skew 0

.nr 0skern 0

.ds 0s \\&\h’\\n(0wu’

..

.de vphntmsrc

.ds 0s

.nr 0w 0

.nr 0skew 0

.nr 0skern 0

..

.de phntmsrc

.ds 0s

.ds 0s \\&\h’\\n(0wu’

..

.EQ
define phantom ’special phntmsrc’
define vphantom ’special vphntmsrc’
define hphantom ’vcenter special hphntmsrc’
.EN

Ted Harding 19 January 2011 Page 6 Last Revised 26 October 2013

