
A Dial-Up Network of UNIX TM Systems

D. A. Nowitz

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT

A network of over eightyUNIX†
computer systems has been established using the telephone system as its primary communication medium. The net-
work was designed to meet the growing demands for software distribution and exchange. Some advantages of our
design are:
-The startup cost is low. A system needs only a dial-up port, but systems with automatic calling units have much
more flexibility.
-No operating system changes are required to install or use the system.
-The communication is basically over dial-up lines, however, hardwired communication lines can be used to increase
speed.
-The command for sending/receiving files is simple to use.

Ke ywords: networks, communications, software distribution, software maintenance

August 18, 1978

†UNIX is a Trademark of Bell Laboratories.

-- --

A Dial-Up Network of UNIX TM Systems

D. A. Nowitz

M. E. Lesk

Bell Laboratories
Murray Hill, New Jersey 07974

1. Purpose
system ritchie thompson bstj 1978 within Bell Laboratories has produced problems of software
distribution and maintenance. A conventional mechanism was set up to distribute the operating
system and associated programs from a central site to the various users. However this mechanism
alone does not meet all software distribution needs. Remote sites generate much software and
must transmit it to other sites. SomeUNIX systems are themselves central sites for redistribution
of a particular specialized utility, such as the Switching Control Center System. Other sites have
particular, often long-distance needs for software exchange; switching research, for example, is
carried on in New Jersey, Illinois, Ohio, and Colorado. In addition, general purpose utility pro-
grams are written at allUNIX system sites. TheUNIX system is modified and enhanced by many
people in many places and it would be very constricting to deliver new software in a one-way
stream without any alternative for the user sites to respond with changes of their own.
Straightforward software distribution is only part of the problem. A large project may exceed the capacity
of a single computer and several machines may be used by the one group of people. It then becomes neces-
sary for them to pass messages, data and other information back an forth between computers.
Several groups with similar problems, both inside and outside of Bell Laboratories, have constructed net-
works built of hardwired connections only. dolotta mashey 1978 bstj network unix system chesson Our
network, however, uses both dial-up and hardwired connections so that service can be provided to as many
sites as possible.

2. Design Goals
Although some of our machines are connected directly, others can only communicate over low-speed dial-
up lines. Since the dial-up lines are often unavailable and file transfers may take considerable time, we
spool all work and transmit in the background. We also had to adapt to a community of systems which are
independently operated and resistant to suggestions that they should all buy particular hardware or install
particular operating system modifications. Therefore, we make minimal demands on the local sites in the
network. Our implementation requires no operating system changes; in fact, the transfer programs look
like any other user entering the system through the normal dial-up login ports, and obeying all local protec-
tion rules.
We distinguish ‘‘active’’ and ‘‘passive’’ systems on the network. Active systems have an automatic calling
unit or a hardwired line to another system, and can initiate a connection. Passive systems do not have the
hardware to initiate a connection. However, an active system can be assigned the job of calling passive sys-
tems and executing work found there; this makes a passive system the functional equivalent of an active
system, except for an additional delay while it waits to be polled. Also, people frequently log into active
systems and request copying from one passive system to another. This requires two telephone calls, but
ev en so, it is faster than mailing tapes.
Where convenient, we use hardwired communication lines. These permit much faster transmission and
multiplexing of the communications link. Dial-up connections are made at either 300 or 1200 baud;
hardwired
The widespread use of theUNIX†

†UNIX is a Trademark of Bell Laboratories.

-- --

- 2 - Nowitz

connections are asynchronous up to 9600 baud and might run even faster on special-purpose communica-
tions hardware. fraser spider 1974 ieee fraser channel network datamation 1975 Thus, systems typically
join our network first as passive systems and when they find the service more important, they acquire auto-
matic calling units and become active systems; eventually, they may install high-speed links to particular
machines with which they handle a great deal of traffic. At no point, however, must users change their pro-
grams or procedures.
The basic operation of the network is very simple. Each participating system has a spool directory, in
which work to be done (files to be moved, or commands to be executed remotely) is stored. A standard
program,uucico, performs all transfers. This program starts by identifying a particular communication
channel to a remote system with which it will hold a conversation.Uucico then selects a device and estab-
lishes the connection, logs onto the remote machine and starts theuucico program on the remote machine.
Once two of these programs are connected, they first agree on a line protocol, and then start exchanging
work. Each program in turn, beginning with the calling (active system) program, transmits everything it
needs, and then asks the other what it wants done. Eventually neither has any more work, and both exit.
In this way, all services are available from all sites; passive sites, however, must wait until called. A vari-
ety of protocols may be used; this conforms to the real, non-standard world. As long as the caller and
called programs have a protocol in common, they can communicate. Furthermore, each caller knows the
hours when each destination system should be called. If a destination is unavailable, the data intended for it
remain in the spool directory until the destination machine can be reached.
The implementation of this Bell Laboratories network between independent sites, all of which store propri-
etary programs and data, illustratives the pervasive need for security and administrative controls over file
access. Each site, in configuring its programs and system files, limits and monitors transmission. In order
to access a file a user needs access permission for the machine that contains the file and access permission
for the file itself. This is achieved by first requiring the user to use his password to log into his local
machine and then his local machine logs into the remote machine whose files are to be accessed. In addi-
tion, records are kept identifying all files that are moved into and out of the local system, and how the
requestor of such accesses identified himself. Some sites may arrange to permit users only to call up and
request work to be done; the calling users are then called back before the work is actually done. It is then
possible to verify that the request is legitimate from the standpoint of the target system, as well as the origi-
nating system. Furthermore, because of the call-back, no site can masquerade as another even if it knows
all the necessary passwords.
Each machine can optionally maintain a sequence count for conversations with other machines and require
a verification of the count at the start of each conversation. Thus, ev en if call back is not in use, a success-
ful masquerade requires the calling party to present the correct sequence number. A would-be imperson-
ator must not just steal the correct phone number, user name, and password, but also the sequence count,
and must call in sufficiently promptly to precede the next legitimate request from either side. Even a suc-
cessful masquerade will be detected on the next correct conversation.

3. Processing
The user has two commands which set up communications,uucp to set up file copying, anduux to set up
command execution where some of the required resources (system and/or files) are not on the local
machine. Each of these commands will put work and data files into the spool directory for execution by
uucp daemons. Figure 1 shows the major blocks of the file transfer process.

File Copy
Theuucico program is used to perform all communications between the two systems. It performs the fol-
lowing functions:
- Scan the spool directory for work.
- Place a call to a remote system.
- Negotiate a line protocol to be used.
- Start programuucico on the remote system.
- Execute all requests from both systems.

-- --

- 3 - Nowitz

- Log work requests and work completions.
Uucico may be started in several ways;
a) by a system daemon,
b) by one of theuucp or uux programs,
c) by a remote system.

Scan For Work
The file names in the spool directory are constructed to allow the daemon programs(uucico, uuxqt)to
determine the files they should look at, the remote machines they should call and the order in which the
files for a particular remote machine should be processed.

Call Remote System
The call is made using information from several files which reside in the uucp program directory. At the
start of the call process, a lock is set on the system being called so that another call will not be attempted at
the same time.
The system name is found in a ‘‘systems’’ file. The information contained for each system is:
[1]system name,
[2]times to call the system (days-of-week and times-of-day),
[3]device or device type to be used for call,
[4]line speed,
[5]phone number,
[6]login information (multiple fields).
The time field is checked against the present time to see if the call should be made. Thephone number
may contain abbreviations (e.g. ‘‘nyc’’, ‘‘boston’’) which get translated into dial sequences using a ‘‘dial-
codes’’ file. This permits the same ‘‘phone number’’ to be stored at every site, despite local variations in
telephone services and dialing conventions.
A ‘‘devices’’ file is scanned using fields [3] and [4] from the ‘‘systems’’ file to find an available device for
the connection. The program will try all devices which satisfy [3] and [4] until a connection is made, or no
more devices can be tried. If a non-multiplexable device is successfully opened, a lock file is created so
that another copy ofuucico will not try to use it. If the connection is complete, thelogin informationis
used to log into the remote system. Then a command is sent to the remote system to start theuucico pro-
gram. The conversation between the twouucico programs begins with a handshake started by the called,
SLAVE, system. TheSLAVE sends a message to let theMASTERknow it is ready to receive the system
identification and conversation sequence number. The response from theMASTER is verified by the
SLAVEand if acceptable, protocol selection begins.

Line Protocol Selection
The remote system sends a message

Pproto-list
whereproto-list is a string of characters, each representing a line protocol. The calling program checks the
proto-list for a letter corresponding to an available line protocol and returns ause-protocolmessage. The
use-protocolmessage is

Ucode
where code is either a one character protocol letter or aN which means there is no common protocol.
Greg Chesson designed and implemented the standard line protocol used by the uucp transmission pro-
gram. Other protocols may be added by individual installations.

Work Processing
During processing, one program is theMASTERand the other isSLAVE. Initially, the calling program is
theMASTER.These roles may switch one or more times during the conversation.
There are four messages used during the work processing, each specified by the first character of the mes-
sage. They are

center; c l. S send a file, R receive a file, C copy complete, H hangup.

-- --

- 4 - Nowitz

The MASTERwill send R or S messages until all work from the spool directory is complete, at which
point anH message will be sent. TheSLAVE will reply with SY, SN, RY, RN, HY, HN, corresponding to
yesor no for each request.
The send and receive replies are based on permission to access the requested file/directory. After each file
is copied into the spool directory of the receiving system, a copy-complete message is sent by the receiver
of the file. The messageCY will be sent if theUNIX cp command, used to copy from the spool directory, is
successful. Otherwise, aCN message is sent. The requests and results are logged on both systems, and, if
requested, mail is sent to the user reporting completion (or the user can request status information from the
log program at any time).
The hangup response is determined by theSLAVEprogram by a work scan of the spool directory. If work
for the remote system exists in theSLAVE’sspool directory, aHN message is sent and the programs switch
roles. If no work exists, anHY response is sent.
A sample conversation is shown in Figure 2.

Conversation Termination
When aHY message is received by theMASTER it is echoed back to theSLAVE and the protocols are
turned off. Each program sends a final "OO" message to the other.

4. Present Uses
One application of this software is remote mail. Normally, aUNIX system user writes ‘‘mail dan’’ to send
mail to user ‘‘dan’’. By writing ‘‘mail usg!dan’’ the mail is sent to user ‘‘dan’’ on system ‘‘usg’’.
The primary uses of our network to date have been in software maintenance. Relatively few of the bytes
passed between systems are intended for people to read. Instead, new programs (or new versions of pro-
grams) are sent to users, and potential bugs are returned to authors. Aaron Cohen has implemented a
‘‘stockroom’’ which allows remote users to call in and request software. He keeps a ‘‘stock list’’ of avail-
able programs, and new bug fixes and utilities are added regularly. In this way, users can always obtain the
latest version of anything without bothering the authors of the programs. Although the stock list is main-
tained on a particular system, the items in the stockroom may be warehoused in many places; typically each
program is distributed from the home site of its author. Where necessary, uucp does remote-to-remote
copies.
We also routinely retrieve test cases from other systems to determine whether errors on remote systems are
caused by local misconfigurations or old versions of software, or whether they are bugs that must be fixed
at the home site. This helps identify errors rapidly. For one set of test programs maintained by us, over
70% of the bugs reported from remote sites were due to old software, and were fixed merely by distributing
the current version.
Another application of the network for software maintenance is to compare files on two different machines.
A very useful utility on one machine has been Doug McIlroy’s ‘‘diff’’ program which compares two text
files and indicates the differences, line by line, between them. hunt mcilroy file Only lines which are not
identical are printed. Similarly, the program ‘‘uudiff’’ compares files (or directories) on two machines.
One of these directories may be on a passive system. The ‘‘uudiff’’ program is set up to work similarly to
the inter-system mail, but it is slightly more complicated.
To avoid moving large numbers of usually identical files,uudiff computes file checksums on each side, and
only moves files that are different for detailed comparison. For large files, this process can be iterated;
checksums can be computed for each line, and only those lines that are different actually moved.
The ‘‘uux’’ command has been useful for providing remote output. There are some machines which do not
have hard-copy devices, but which are connected over 9600 baud communication lines to machines with
printers. Theuux command allows the formatting of the printout on the local machine and printing on the
remote machine using standardUNIX command programs.

5. Performance
Throughput, of course, is primarily dependent on transmission speed. The table below shows the real
throughput of characters on communication links of different speeds. These numbers represent actual data
transferred; they do not include bytes used by the line protocol for data validation such as checksums and
messages. At the higher speeds, contention for the processors on both ends prevents the network from

-- --

- 5 - Nowitz

driving the line full speed. The range of speeds represents the difference between light and heavy loads on
the two systems. If desired, operating system modifications can be installed that permit full use of even
very fast links.

center; c c n n. Nominal speed Characters/sec. 300 baud 27 1200 baud 100-110 9600
baud 200-850

In addition to the transfer time, there is some overhead for making the connection and logging in ranging
from 15 seconds to 1 minute. Even at 300 baud, however, a typical 5,000 byte source program can be
transferred in four minutes instead of the 2 days that might be required to mail a tape.
Traffic between systems is variable. Between two closely related systems, we observed 20 files moved and
5 remote commands executed in a typical day. A more normal traffic out of a single system would be
around a dozen files per day.
The total number of sites at present in the main network is 82, which includes most of the Bell Laborato-
ries full-size machines which run theUNIX operating system. Geographically, the machines range from
Andover, Massachusetts to Denver, Colorado.
Uucp has also been used to set up another network which connects a group of systems in operational sites
with the home site. The two networks touch at one Bell Labs computer.

6. Further Goals
Eventually, we would like to dev elop a full system of remote software maintenance. Conventional mainte-
nance (a support group which mails tapes) has many well-known disadvantages. brooks mythical man
month 1975 There are distribution errors and delays, resulting in old software running at remote sites and
old bugs continually reappearing. These difficulties are aggravated when there are 100 different small sys-
tems, instead of a few large ones.
The availability of file transfer on a network of compatible operating systems makes it possible just to send
programs directly to the end user who wants them. This avoids the bottleneck of negotiation and packaging
in the central support group. The ‘‘stockroom’’ serves this function for new utilities and fixes to old utili-
ties. However, it is still likely that distributions will not be sent and installed as often as needed. Users are
justifiably suspicious of the ‘‘latest version’’ that has just arrived; all too often it features the ‘‘latest bug.’’
What is needed is to address both problems simultaneously:
1.Send distributions whenever programs change.
2.Have sufficient quality control so that users will install them.
To do this, we recommend systematic regression testing both on the distributing and receiving systems.
Acceptance testing on the receiving systems can be automated and permits the local system to ensure that
its essential work can continue despite the constant installation of changes sent from elsewhere. The work
of writing the test sequences should be recovered in lower counseling and distribution costs.
Some slow-speed network services are also being implemented. We now hav e inter-system ‘‘mail’’ and
‘‘diff,’’ plus the many implied commands represented by ‘‘uux.’’ Howev er, we still need inter-system
‘‘write’’ (real-time inter-user communication) and ‘‘who’’ (list of people logged in on different systems). A
slow-speed network of this sort may be very useful for speeding up counseling and education, even if not
fast enough for the distributed data base applications that attract many users to networks. Effective use of
remote execution over slow-speed lines, however, must await the general installation of multiplexable chan-
nels so that long file transfers do not lock out short inquiries.

7. Lessons
The following is a summary of the lessons we learned in building these programs.
1.By starting your network in a way that requires no hardware or major operating system changes, you can
get going quickly.
2.Support will follow use. Since the network existed and was being used, system maintainers were easily
persuaded to help keep it operating, including purchasing additional hardware to speed traffic.
3.Make the network commands look like local commands. Our users have a resistance to learning anything
new: all the inter-system commands look very similar to standardUNIX system commands so that little
training cost is involved.

-- --

- 6 - Nowitz

4.An initial error was not coordinating enough with existing communications projects: thus, the first version
of this network was restricted to dial-up, since it did not support the various hardware links between sys-
tems. This has been fixed in the current system.

Acknowledgements
We thank G. L. Chesson for his design and implementation of the packet driver and protocol, and A. S.
Cohen, J. Lions, and P. F. Long for their suggestions and assistance. $LIST$

